PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

نویسندگان

  • Liping Wu
  • Tadayuki Oshima
  • Jing Shan
  • Hiroo Sei
  • Toshihiko Tomita
  • Yoshio Ohda
  • Hirokazu Fukui
  • Jiro Watari
  • Hiroto Miwa
چکیده

Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATP: a mediator for HCl-induced TRPV1 activation in esophageal mucosa.

In esophageal mucosa, HCl causes TRPV1-mediated release of calcitonin gene-related peptide (CGRP) and substance P (SP) from submucosal neurons and of platelet-activating factor (PAF) from epithelial cells. CGRP and SP release was unaffected by PAF antagonists but reduced by the purinergic antagonist suramin. ATP caused CGRP and SP release from esophageal mucosa, confirming a role of ATP in the ...

متن کامل

HCl-induced and ATP-dependent upregulation of TRPV1 receptor expression and cytokine production by human esophageal epithelial cells.

The pathogenesis of gastroesophageal reflux disease (GERD) remains elusive, but recent evidence suggests that early secretion of inflammatory cytokines and chemokines by the mucosa leads to influx of immune cells followed by tissue damage. We previously showed that exposure of esophageal mucosa to HCl causes ATP release, resulting in activation of acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholin...

متن کامل

Bradykinin Induces TRPV1 Exocytotic Recruitment in Peptidergic Nociceptors

Transient receptor potential vanilloid I (TRPV1) sensitization in peripheral nociceptors is a prominent phenomenon that occurs in inflammatory pain conditions. Pro-algesic agents can potentiate TRPV1 activity in nociceptors through both stimulation of its channel gating and mobilization of channels to the neuronal surface in a context dependent manner. A recent study reported that ATP-induced T...

متن کامل

Regulation of acid signaling in rat pulmonary sensory neurons by protease-activated receptor-2.

Airway acidification has been consistently observed in airway inflammatory conditions and is known to cause cardiorespiratory symptoms that are, at least in part, mediated through the activation of bronchopulmonary C fibers and the subsequent reflexes. Protease-activated receptor-2 (PAR(2)) is expressed in a variety of cells in the lung and airways and is believed to play a role in airway infla...

متن کامل

Oxidative stress-induced posttranslational modification of TRPV1 expressed in esophageal epithelial cells.

Human esophageal epithelium is continuously exposed to physical stimuli or to gastric acid that sometimes causes inflammation of the mucosa. Transient receptor potential vanilloid 1 (TRPV1) is a nociceptive, Ca(2+)-selective ion channel activated by capsaicin, heat, and protons. It has been reported that activation of TRPV1 expressed in esophageal mucosa is involved in gastroesophageal reflux d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 309 8  شماره 

صفحات  -

تاریخ انتشار 2015